Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12035, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542060

RESUMO

Carbonate deposits formed in Roman aqueducts provide a window onto the environment and water management in antiquity. These laminated archives precipitated over a period of decades to centuries and are a potential high-resolution source of unwritten history. However, their use as environmental archives is hampered by local and partial removal during maintenance work in some aqueducts. This apparent problem, however, creates a unique opportunity to study Roman water management. We present the discovery of traces of regular maintenance in carbonate deposits of the Roman aqueduct of Divona (Cahors, France). The main objective of this study is to determine the periodicity of local carbonate removal and repairs in this aqueduct. Traces such as tool marks, calcite deformation twins, debris from cleaning and repairs are attested in the deposits as proof of periodic manual carbonate removal by Roman maintenance teams. The δ18O profile, recording at least 88 years of deposition, shows that maintenance work was done at intervals of 1-5 years. The undisturbed periodicity of the δ18O profile indicates that work was carried out rapidly and never in summer, consonant with the advice of the Roman author Frontinus about maintenance of the aqueducts of the city of Rome. Maintenance intervals lengthened and cleaning became less frequent close to the final years of the aqueduct. This change in maintenance policy gives insight into changing local population and socio-economic dynamics in late antiquity.

2.
Sci Rep ; 10(1): 17917, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087794

RESUMO

The Barbegal watermill complex, a unique cluster of 16 waterwheels in southern France, was the first known attempt in Europe to set up an industrial-scale complex of machines during the culmination of Roman Civilization in the second century CE. Little is known about the state of technological advance in this period, especially in hydraulics and the contemporary diffusion of knowledge. Since the upper part of the Barbegal mill complex has been destroyed and no traces of the wooden machinery survived, the mode of operation of these mills has long remained elusive. Carbonate incrustations that formed on the woodwork of the mills were used to reconstruct its structure and function, revealing a sophisticated hydraulic setup unique in the history of water mills. The lower mills used an elbow shaped flume to bring water onto overshot millwheels. This flume was specially adapted to the small water basins and serial arrangement of the mills on the slope. Carbonate deposits from ancient water systems are therefore a powerful tool in archaeological reconstructions and provide tantalizing insights into the skills of Roman engineers during a period of history that is the direct predecessor of our modern civilization.

3.
Sci Adv ; 4(9): eaar3620, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30191173

RESUMO

The second century CE Roman watermill complex of Barbegal, France, is regarded as one of the first industrial complexes in human history. The 16 water wheels are no longer extant as all woodwork has decayed. However, carbonate deposits precipitated from water during operation of the mills forming casts on the woodwork. These casts are preserved in fragments and provide unique insights into the frequency of use and maintenance of the mills, and even into the structure of the water wheel chambers. Stable isotope time series of carbonate deposits reveal that the mill activity was regularly interrupted for several months. This strongly suggests that the mill complex was not used for a steady supply of flour to a major population center, as previously thought, but likely served to produce nonperishable hardtack for the nearby harbors.

4.
Sci Rep ; 6: 28704, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357129

RESUMO

An inscription on the supporting wall of the inverted siphon of the aqueduct of the ancient Roman city of Patara, SW Turkey, explains how the wall collapsed during an earthquake and was subsequently restored. Carbonate deposits formed inside the aqueduct channel show cyclic stable isotope changes representing 17 years of deposition. This sequence, together with the text of the inscription, allows dating the earthquake to 68 AD and the original inauguration of the aqueduct to the winter of 51/52 AD. Thus, the carbonate deposits represent a high-resolution record of palaeotemperature and precipitation for SW Turkey covering the complete reign of the Emperor Nero. The period shows a cooling and drying trend after an initial warm and more humid period, interrupted by a few anomalous years. These 2 cm of calcite highlight the significance of carbonate deposits in ancient water supply systems as a high-resolution archive for palaeoclimate, palaeoseismology and archaeology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...